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Abstract

The ability to encode, store, and retrieve visually presented objects is referred to as visual

working memory (VWM). Although crucial for many cognitive processes, previous research

reveals that VWM strictly capacity limited. This capacity limitation is behaviorally observable

in the set size effect: the ability to successfully report items in VWM asymptotes at a small

number of items. Research into the neural correlates of set size effects and VWM capacity

limits in general largely focus on the maintenance period of VWM. However, we previously

reported that neural resources allocated to individual items during VWM encoding corre-

spond to successful VWM performance. Here we expand on those findings by investigating

neural correlates of set size during VWM encoding. We hypothesized that neural signatures

of encoding-related VWM capacity limitations should be differentiable as a function of set

size. We tested our hypothesis using High Density Electroencephalography (HD-EEG) to

analyze frequency components evoked by flickering target items in VWM displays of set

size 2 or 4. We found that set size modulated the amplitude of the 1st and 2nd harmonic fre-

quencies evoked during successful VWM encoding across frontal and occipital-parietal

electrodes. Frontal sites exhibited the most robust effects for the 2nd harmonic (set size 2 >
set size 4). Additionally, we found a set-size effect on the induced power of delta-band (1–4

Hz) activity (set size 2 > set size 4). These results are consistent with a capacity limited

VWM resource at encoding that is distributed across to-be-remembered items in a VWM

display. This resource may work in conjunction with a task-specific selection process that

determines which items are to be encoded and which are to be ignored. These neural set

size effects support the view that VWM capacity limitations begin with encoding related

processes.

Introduction

Visual working memory (VWM) refers to the ability to store and manipulate visual informa-

tion for brief periods of time. Although VWM is an integral aspect of daily cognition [1,2], it is

nonetheless capacity limited [3]. Behaviorally, these limitations clearly reveal themselves when
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set sizes increase. VWM performance decreases as the encoding, maintenance and retrieval

demands increase. A recent focus of cognitive neuroscience research is to understand the neu-

ral bases of this capacity limitation. Here, we applied high-density electroencephalography

(HD-EEG) to investigate both induced and evoked neural set size effects operating during the

encoding phase of VWM.

Prior to objects being stored in VWM, stimuli enter iconic memory. This buffer helps

explain the richness of visual experience for brief periods of time as well as transsaccadic per-

ception [4,5]. Although brief (<500ms), iconic memory has a nearly limitless capacity that

decays quickly [6–8]. In contrast, VWM is limited to ~4 items [9–11], or fewer [12]. Here, we

ask: do limitations arise during VWM encoding?

Set size effects are a hallmark of VWM’s capacity limitation. VWM performance accuracy

decreases with an increase in the number of items (set size) presented [13,11]. Recent findings

aimed at elucidating the neural bases of VWM capacity limitations have sought to link neural

correlates of the behavioral set size effect with stages of VWM [14–17]. Functional magnetic

resonance imaging (fMRI) data show that during VWM maintenance the BOLD signal in the

intraparietal sulcus (IPS) increases according to the number of items a person is maintaining

and this signal reaches asymptote at an individual’s maximum VWM capacity [17–19]. Simi-

larly, EEG research reveals an evoked potential localized to occipito-parietal regions during

maintenance of items presented to the contralateral side of the visual field. This physiological

signal, known as the contralateral delay activity (CDA), increases in amplitude according to set

size and also asymptotes at a participant’s VWM capacity limit [20–22]. To bridge these two

literatures, we recently measured fMRI while applying a CDA paradigm. We found that the

IPS represents contralaterally presented items in VWM, but that VWM capacity limits did not

differ when attending to one or both visual hemifields [23]. These findings provide converging

neural evidence that VWM maintenance related processes contribute to VWM capacity

limitations.

However, it is clear that the retrieval stage also limits VWM capacity. There is a literature

devoted to studying how different task demands elicit different behavioral and neural patterns

during retrieval. A prevailing view is that we typically scan through the contents of VWM

using serial exhaustive search, even after finding the target item [24–26]. Consequently, with

more items in VWM, responses slow, subjecting items in VWM to greater decay and worse

performance [27,28].

The conversation thus far overlooks the role encoding plays in limiting VWM capacity:

encoding necessarily precedes maintenance and retrieval. Since Miller made ‘chunking’

famous [29], VWM encoding strategy has been considered important [30,31], as is prior

knowledge [32]. Behaviorally, encoding duration modulates VWM performance with shorter

times leading to less accurate responses during recall [33]. Monkey physiology shows that

capacity limitations may emerge during encoding as objects compete for resources that are dis-

tributed in a flexible manner within each hemifield [34]. In humans, physiological recordings

have shown that the neural activity associated with objects that are physically present is nearly

indistinguishable from objects that have been removed from view and are being actively main-

tained in VWM [35]. These findings confirm the importance of encoding as a contributing

factor to capacity limitations.

Recent neural evidence highlighting the importance of encoding comes from studies show-

ing that consistent activations during encoding and maintenance are required for successful

retrieval. For example, visual regions (e.g. primary visual cortex) contribute to VWM mainte-

nance in the absence of visual stimulation [36,37]. Furthermore, successful VWM performance

is predicted by enhanced functional connectivity between extrastriate cortex and lateral pre-

frontal cortex [38], and between frontoparietal regions [39,40]. Furthermore, functional
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connectivity shifts predictably depending on set size [41]. Set size also predicts activity in

regions associated with long-term memory including hippocampal involvement during encod-

ing [42], and parahippocampal activity during maintenance [43]. It is reasonable to believe

that VWM capacity limits arise from each stage of VWM. Yet, questions remain regarding

how these limitations emerge.

Recently, we used the classic frequency-tagging EEG technique to examine neural responses

to the visual stimuli presented in a VWM task. Frequency-tagging entails rapid and periodic

stimulus presentation, inducing corresponding rapid-periodic responses in the simultaneously

recorded EEG [44]. We reported that the frequency-tag amplitudes during encoding were sig-

nificantly larger for successfully remembered items compared to subsequently forgotten items

[45]. The frequency-tags of unprobed items were also greater on correct trials.

To summarize this technique more specifically, frequency-tags correspond to transient

evoked potentials measured at the scalp using EEG. Transforming the EEG signal into the fre-

quency domain allows for the identification of frequency-tags corresponding to each flickering

stimulus. For example, a stimulus flickering at 5 Hz elicits five potentially superimposed visu-

ally evoked potentials per second and thus, produces a 5 Hz signal in the frequency domain.

This 5 Hz frequency-tag represents the neural correlate of the stimulus response. In addition

to frequency-tags corresponding to the rate of stimulus flicker (fundamental frequency), the

EEG also contains harmonics of the fundamental frequency. For example, a stimulus flickering

at 5 Hz may elicit 2nd and 3rd harmonics at 10 Hz and 15 Hz, respectively. The fundamental

frequency and its harmonics are thought to be driven by different neural populations, the for-

mer indicative of bottom-up processing and the latter of top-down processing [46]. Although

it is conceivable that a flickering stimulus of sort used in our study may lead to the entrainment

of neural ensembles underlying cognitive operations such as VWM encoding, we note that

this is not goal of the frequency-tagging procedure. Thus, the stimulus frequencies chosen for

the experimental procedure (described in Materials and methods section: Experimental proce-

dure) are arbitrary with regards to endogenous neural oscillations involved in cognitive opera-

tions. Rather, we use these frequency-tags to identify neural correlates of individual stimuli
during VWM encoding.

However, induced oscillations also provide insights regarding cognitive processes, includ-

ing VWM [47,48]. Unlike evoked oscillations, induced oscillations are not phase-locked to the

stimulus and they are associated with cognitive states as well as functional changes in neural

processing. These oscillations may reflect changes occurring within as well as between brain

structures. Specifically, these changes have been proposed as a mechanism for neural synchro-

nization resulting in short- and long- range communication. Such communication can be cor-

tico-cortical or subcortico-cortical and has been linked to numerous cognitive processes

including attention, memory and feature binding [49]. These oscillations can be categorized

into the following frequency bands: delta (1–4 Hz), theta (5–8 Hz), alpha (9–12 Hz), beta (12–

31 Hz), and gamma (32–100 Hz). For our purposes, frequency-tags are used to investigate the

allocation of neural resources to individual items in the VWM paradigm as a function of set

size, whereas induced oscillations can be interpreted as a proxy for task-related cognitive pro-

cesses occurring during the encoding period.

Here, we determined whether neural correlates of set size effects can be observed during

VWM encoding exploring both induced and evoked measures. We compared encoding-

related neural responses to VWM arrays of set size 2 or 4. We found that during VWM encod-

ing the frequency-tag amplitudes corresponding to successfully retrieved items is modulated

by set size. The qualitative nature of this encoding-related neural correlate is distinct from

those observed in previous studies examining neural set size effects during maintenance.

Unlike fMRI and CDA results showing increases in neural responses with increased set sizes,
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we find significantly larger neural responses to successfully retrieved items in the 2-item com-

pared to the 4-item set size. In addition, we found an effect of set-size on the amplitude of the

induced delta-band activity. Again, increased power was observed in the set size 2 compared

to set size 4. These results are consistent with the conclusion that encoding-related VWM pro-

cesses are capacity limited and attempts to encode multiple items overtaxes this resource and

reduces encoding success.

Materials and Methods

Participants

Twenty-four, right handed, neurotypical adults with normal or corrected to normal visual acu-

ity participated (13 male, age 20–40) and provided informed written consent. The Institutional

Review Board at the University of Nevada, Reno approved all protocols. As described below,

three of these participants were excluded due to excessive artifacts detected in the EEG.

Stimulus display

Stimuli were displayed on a Mitsubishi Diamond Pro270 CRT monitor (20in, 1024x768) with

a 120-Hz refresh rate, running via a 2.6Mhz MacMini and presented using the PsychTool-

box [50,51] for MATLAB (MathWorks Inc., Natick, MA). Viewing distance was 57 cm.

Electrophysiological recordings

The electroencephalogram (EEG) was continuously recorded using a 256 channel HydroCel

Geodesic Sensor Net via an EGI Net Amps Bio 300 amplifier (Electrical Geodesics Inc.,

Eugene, OR) sampling at 1000 Hz. The digital data were recorded using Netstation 5.0(1) soft-

ware. Impendence values were kept at or below 50 O. Frame-accurate timing of stimulus pre-

sentation was validated by photodiode.

Experimental Procedure

Participants performed a VWM change detection task with a set size of either 2 or 4 items; see

Fig 1. Trials began with fixation (600 ms) consisting of a black central fixation point (0.35˚ x

0.35˚) on a neutral gray background, surrounded by 4 black squares (7˚ x 7˚) that occupied

predetermined stimulus positions centered in each of the four quadrants with a random offset

of up to 1.5˚ in any direction. Next, either 2 or 4 square placeholders were replaced by shape

stimuli (1000 ms). The shapes were bilaterally symmetrical shapes (7˚ x 7˚) chosen randomly

(without replacement) from a set of ten. Stimuli were generated by a previously described algo-

rithm [52,53]. During encoding, each shape reversed contrast (black-white) at a different fre-

quency (3hz, 5hz, 12hz, or 20hz). In the set size 4 condition, each shape flickered at one of the

frequencies; in the set size 2 condition, the two shapes flickered at 3hz and 5hz respectively

and the two placeholder squares flickered at 12 Hz and 20 Hz. The placeholder squares

ensured that any differences between set size 2 and set size 4 were not caused by the flicker of

additional stimuli or frequencies in the set size 4 condition. Only the 3Hz and 5 Hz probed tri-

als in the set size 4 condition were analyzed; none of the 12Hz and 20Hz probed items in the

set size 4 condition were included in analyses. These specific frequencies were chosen because

they allow for an integer number of cycles at the 120hz frame refresh rate during the 1000 ms

encoding period, and preserved independence through the third harmonics. The encoding

phase was followed by a maintenance period (1000 ms) during which time only the fixation

spot was present. Next, a probe stimulus shape reappeared in one quadrant (3000 ms). Partici-

pants were instructed to indicate whether this probe item was old (same shape in the same
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location) or new (different shape or different location) via key press. Thus, correct responses

were contingent on accurately maintaining both shape and location. Each frequency (set size

Fig 1. Visual working memory task and data processing sequence. (A) Participants viewed an initial fixation screen (600ms) followed by a memory array

(1000ms) in which each item flicked at a distinct frequency (3 Hz, 5 Hz, 12 Hz and 20 Hz). Set size was manipulated to create 2 conditions, set size 2 or set

size 4. A delay period (1000ms) followed the stimulus presentation. Finally, a single probed stimulus appeared in one of the four previously presented

locations. Participants were instructed to indicate whether the probed stimulus was old (same shape in same location) or new (different shape). Note: black

squares were used in the fixation period to control for onset VEP responses that could contaminate the data. (B) Epochs lasting 1000 ms time-locked to the

onset of the memory array were extracted from the raw data. (C) In the evoked analysis, once epochs in each condition were averaged together, a Fourier

Transform was applied to the data so that the frequency tag amplitudes could be extracted for the fundamental (red) and harmonic (green) frequencies

corresponding to probed items in the stimulus array. Conversely, in the induced condition, the Fourier Transform is applied to each trial prior to averaging.

doi:10.1371/journal.pone.0167022.g001
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2: 3 Hz, 5 Hz; set size 4: 3 Hz, 5 Hz, 12 Hz & 20 Hz) was probed a total of 76 times (38 were

‘old’, 38 were ‘new’). The entire experiment consisted of 456 trials (set size 2: 152 trials (1/3),

set size 4: 304 (2/3)) and 50% of probe items matched what was shown at encoding. Trials were

presented in pseudorandom order.

Electrophysiological data preprocessing

The EEG data were processed using Netstation 5.0 and custom scripts written in MATLAB.

A high-pass filter of 0.1 Hz removed slow drift noise. Next, the filtered data was segmented

into 1000 ms epochs time-locked to stimulus onset and lasting the duration of the encoding

period. Segmentation was done using trigger markers sent from the stimulus computer to

the acquisition computer at the onset of every encoding period. The time offset between

stimulus appearance and trigger registration was measured using a photodiode and com-

pensated for during trial segmentation. Using Netstation, artifact detection was performed

to identify trials containing eye blinks, eye movements, and bad channels; this was followed

when possible by bad channel replacement. Trials were marked for exclusion if they con-

tained an eye blink, an eye movement, or >10% bad channels (exclusion criteria on the

basis of too many bad trials is discussed in Materials and methods section: Artifact detection

and subject exclusion). Using custom MATLAB scripts, the correct trials were grouped into

the following 4 conditions based on set size and the flicker frequency of the to-be-probed

item: correct 3 Hz/set size 2, correct 5 Hz/set size 2, correct 3 Hz/set size 4, correct 5 Hz/set

size 4. The trials probing the 12 Hz or 20 Hz item in the set size 4 condition were excluded

from analyses, as were incorrect trials.

Artifact detection and subject exclusion

As described in the previous section, a trial was marked bad if it contained an eye blink, an eye

movement, or if 10% of the channels were found to be bad during the encoding period. Partici-

pants whose number of bad trials exceeded 30% were excluded from the study. Under these

criteria, 3 people were excluded from the final analysis leaving a total of 21 participants.

Among these remaining participants, the mean number of trials per condition was 50.6 with a

standard deviation of 8.46. This number takes into account the trials rejected due to artifacts as

well as the good trails that were left out during the permutation analysis (see Materials and

methods section: Permutation analysis).

Permutation analysis

Because only correct trials were analyzed there were unequal numbers of trials per condition

per participant. To ensure comparable signal-to-noise rations and fairer comparisons between

conditions, we conducted a permutation analysis in which an equal number of trials contrib-

uted to each condition average. For each participant, we identified the condition with the few-

est number of trials and on each iteration of the permutation analysis, randomly selected that

number of trials from the other conditions. This process was repeated over multiple iterations

(see Materials and methods sections on frequency-tagging and induced power analysis). The

trials from each iteration were averaged together appropriately for each of the four conditions:

set size: 2 or 4; frequency of probed item: 3 Hz or 5 Hz. Permutation analyses were performed

independently for the frequency-tagging and the induced power analysis; these are described

below in more detail.
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Frequency-tagging (evoked) analysis

To avoid the random selection of an outlier subset of trials, a total of 50,000 iterations of the

permutation analysis were performed and the average across iteration was used as the response

to the other conditions. This process resulted in four average time-domain waveforms com-

puted at each electrode for each participant. Each waveform was 1000ms long and corre-

sponded to either the average response for set-size 2 or 4 at the frequency of probed item: 3 Hz

or 5 Hz. A Fourier transform was applied to the average of each condition, at each of the 256

channels, so that the frequency-tag amplitudes for the fundamental and second harmonic fre-

quencies could be extracted for the probed items at each set size (2 and 4). Again, the analysis

was restricted to the 3Hz and 5Hz trials. For example, if a to-be-probed item flickered at 5 Hz

during encoding, then the amplitudes of 5 Hz (1f) and 10 Hz (2f) were used as indices for neu-

ral activity related to VWM encoding of the to-be-probed item.

At each electrode site, a set size index was computed for the amplitudes of each probed-fre-

quency, grouped according to whether it was the fundamental:

SSI3Hz ¼
½SetSize4ð3HzÞ � SetSize2ð3HzÞ�

½SetSize4ð3HzÞ þ SetSize2ð3HzÞ�

SSI5Hz ¼
½SetSize4ð5HzÞ � SetSize2ð5HzÞ�

½SetSize4ð5HzÞ þ SetSize2ð5HzÞ�

or the 2nd harmonic:

SSI6Hz ¼
½SetSize4ð6HzÞ � SetSize2ð6HzÞ�

½SetSize4ð6HzÞ þ SetSize2ð6HzÞ�

SSI10Hz ¼
½SetSize4ð10HzÞ � SetSize2ð10HzÞ�

½SetSize4ð10HzÞ þ SetSize2ð10HzÞ�

These normalizing-indices allow us to combine the 3Hz and 5Hz data while compensating for

intrinsic differences in frequency specific amplitudes often observed with EEG data. This was

done separately for the fundamental frequencies (SSI1f): 3hz and 5hz index values were aver-

aged together as were the indices for the 2nd harmonics (SSI2f):

SSI1f ¼
SSI3Hz þ SSI5Hz

2

SSI2f ¼
SSI6Hz þ SSI10Hz

2

An index value greater than zero indicates that the neural response to the to-be-probed items

are greater in set size 4 conditions than set size 2. Conversely, negative indices indicate greater

neural responses in the set size 2 arrays. Index values were then averaged across subjects and

subjected to statistical analyses.

At the group level, one sample t-tests (α = 0.05) were performed at each electrode to evalu-

ate whether the indices were significantly non-zero. We applied a False Discovery Rate Correc-

tion (q = 0.10) to account for multiple comparisons.

Induced power frequency analysis

To examine induced effects of set-size, we applied the Fourier transform to each individual

trial and computed the amplitude of response at each frequency. For each frequency we then

VWM Capacity Limitations at Encoding
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averaged the amplitudes across trials (excluding phase). Doing so allows for the extraction of

induced oscillatory activity that would otherwise cancel out due to variations in phase [49]. As

before, to account for uneven numbers of trials in each condition, we applied a permutation

analysis using 25,000 iterations (the smaller number of iterations in the induced power analysis

relative to the evoked power analysis was due to the increased computational load of perform-

ing a Fourier analysis on individual trials as opposed to the average of those trials). This pro-

cess resulted in 4 averaged frequency-domain amplitude spectra computed at each electrode

for each participant. Each spectra consisted of the induced power at frequencies ranging from

1–500 Hz corresponding to the encoding period. Next, we isolated amplitudes for frequencies

between 1–100 Hz. These amplitudes were normalized by creating an index value for each fre-

quency (1–100 Hz) across the 3 Hz and 5 Hz trials and subsequently averaged together (3 Hz

& 5 Hz). A sample index value is shown below

SSI4Hz ¼
½SetSize4ð4HzÞ � SetSize2ð4HzÞ�

½SetSize4ð4HzÞ þ SetSize2ð4HzÞ�

These normalizing-indices allow us to again combine data across frequency while compen-

sating for intrinsic differences in frequency specific amplitudes observed in EEG data. Next,

the index values were averaged across the following frequency bands: delta (1 Hz—4 Hz), theta

(5 Hz—7 Hz), alpha (8 Hz -12 Hz), beta (13 Hz—31 Hz) and gamma (32 Hz—100 Hz).

At the group level, one sample t-tests (α = 0.05) were performed at each electrode to evalu-

ate whether the indices were significantly non-zero. We applied a False Discovery Rate Correc-

tion (q = 0.10) to account for multiple comparisons.

Results

Behavioral Accuracy

First, we examined the behavioral performance in the VWM task to make sure we replicated

the set size effect. As expected, accuracy was significantly better in the set size 2 condition

(M= 92.32, SD = 5.28) compared to the set size 4 condition (M = 74.62, SD = 6.96; t(20) = 4.83,

p <0.0001); see Fig 2. Secondly, we wanted to ensure that behavioral performance was not

affected by differences in the flicker frequency of the probed items. In the set size 2 condition,

a paired samples t-test yielded no significant difference between the 3 Hz (M= 93.04,

SD = 4.31) and 5 Hz trials (M= 91.59, SD = 4.49; t(20) = 1.39, p = 0.18). In the set size 4 condi-

tion, a repeated measures ANOVA showed no significant differences between the 3 Hz

(M= 71.67, SD = 5.46), 5 Hz (M= 75.68, SD = 6.17), 12 Hz (M= 67.35, SD = 6.07), and 20 Hz

trials (M= 73.25, SD = 6.59; F(3, 80) = 0.67, p = 0.57).

Analysis of frequency tagging amplitude and set size effects

In Fig 3A, index values for SSI1f and SSI2f (see Materials and methods section: Frequency-tag-

ging (evoked) analysis) for description) are plotted on topographic maps to illustrate set size

effects at encoding for set size 2 > 4 and 4 > 2 [54]. One-sample t-tests were computed for

each index across all 256 channels. The subsequent t-statistics are plotted on topographic maps

in Fig 3B for both set size 2 > 4 and set size 4 > 2. For these maps, only the t-statistics that

were significant at the uncorrected p < 0.05 level are plotted. In Fig 3C, the t-stats are ranked

by p-value and plotted for every electrode. Positive values depict greater activity for set size 4

and negative values depict greater activity for set size 2. Green dotted lines represent a thresh-

old equivalent to: α = 0.05. Red-dotted lines represent a FDR corrected threshold of q = 0.1.
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We highlight the following observations. First, the indices shown in Fig 3A reveal a set of

electrodes at central and posterior sites for which set size 4 yields larger responses primarily in

the fundamental frequency responses. However, few of these indices are statistically

Fig 2. Behavioral accuracy for the set size 2 and set size 4 conditions. Participants performed significantly better on set size 2 condition. Error bars

represent standard errors of the means.

doi:10.1371/journal.pone.0167022.g002
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significant, particularly when taking multiple comparisons into consideration (Fig 3B and 3C).

Second, another set of electrodes located primarily at frontal electrode sites for which set size 2

yield larger responses in both the fundamental frequency and 2nd harmonic, many of these

indices are statistically significant, even when taking multiple comparisons into consideration

(Fig 3B and 3C).

Analysis of induced power and set size effects

Index values for five frequency bands (beta, theta, alpha, beta, gamma) are plotted on topo-

graphic maps to illustrate induced power set size effects at encoding (Fig 4A). One-sample t-

tests were computed for each index across all 256 channels and plotted as a function of set size

2 > 4 and set size 4 > 2 (Fig 4B). Only the t-statistics that were significant at the uncorrected

p < 0.05 level are plotted. As before, the t-stats were organized by p-value and plotted for every

electrode following the conventions described above (Fig 4C: positive: set size 4 > 2; negative:

set size 2 > 4). Green dotted lines represent a threshold equivalent to α = 0.05. For the delta

band, the 0.05 alpha value corresponds to an FDR q-value of 0.09. In contrast, few of the t-stats

for the theta, alpha and beta frequency bands are significant at α = 0.05 (FDR qs > 0.35, 0.99 &

0.99, respectively). No significant t-stats were observed for the gamma frequency band.

We highlight the following observations. Increased delta power in the set size 2 > set size 4

was observed in frontal and posterior electrode cites. Although fewer electrodes reached statis-

tical significance, some increased theta activity was observed in the set size 2 condition relative

to the set size 4 condition, primarily at frontal locations. However, it should be noted that

these electrodes did not survive FDR correction.

Discussion

To better understand the neural basis of VWM capacity limitations we investigated encoding-

related processing differences as a function of set size and retrieval success. To examine poten-

tially stimulus-specific neural correlates of set-size we leveraged the classic EEG frequency-tag-

ging approach. To investigate potentially task-related neural correlates of set-size we examined

changes in induced power.

Frequency-tagging involves flickering each stimulus at a unique frequency and measuring

the evoked EEG power at the corresponding frequency. Index values were computed allowing

a comparison of frequency-tags across the set size 2 and set size 4 conditions. These data

revealed that over anterior sites above frontal cortex, the frequency-tags, especially for the 2nd

harmonic, were significantly larger in the set size 2 condition compared to the set size 4 condi-

tion. This same frontal area and additional sites over posterior regions showed induced power

changes in the delta band during the VWM encoding period as a function of set size. These

results indicate that VWM set size effects are partially mediated by encoding related processes.

One reason why these results were observed primarily over the frontal cortex (as opposed to

occipital cortex) may be related to the fact that spatial maps are highly lateralized in the early

visual areas but become less lateralized as visual information reaches the frontal lobes. Since

Fig 3. Index values and T-stats depicting set size effects (2 vs. 4) at encoding. (A) Index values

(described in Materials and methods section: Frequency-tagging (evoked) analysis) plotted on topographic

maps. Green corresponds to set size 4 > set size 2, purple corresponds to set size 2 > set size 4. (B) t-stats

plotted on topographic maps. Plotted values correspond to t-stats at or below a p value of 0.05. Red

corresponds to set size 4 > set size 2, blue corresponds to set size 2 > set size 4. (C) t-stats at each electrode

arranged by p values. Green dotted line represents a threshold of α = 0.05. Red line represents an FDR

corrected threshold for q = 0.1 (see results section: Analysis of frequency tagging amplitude and set size

effects). Channels significant at or above the FDR threshold are represented by a thicker border.

doi:10.1371/journal.pone.0167022.g003
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items in the set size 2 condition were presented at random locations (either bilaterally or uni-

laterally) and all correct trials were subsequently averaged together, this may explain the lack

of set size effects over posterior electrodes.

These data extend a growing literature honing in on the neural correlates of VWM capacity.

Considerable recent interest has focused on VWM maintenance. Previous fMRI studies

uncovered a parametric increase in posterior parietal cortex (PPC) as a function of increased

VWM set size [52,55]. For each individual, when the number of stored items exceeded work-

ing memory capacity, the BOLD signal plateaued [18]. These results suggest the presence of a

finite neural resource that is depleted. The EEG literature has produced analogous results

using the CDA, which increases with VWM set size up to an individual’s capacity limit

[56,22].

The current results of the frequency-tagging (evoked) analysis may appear contradictory to

fMRI and EEG literature reporting increased neural measures corresponding with increased

Fig 4. Index values and T-stats depicting induced power set size effects (2 vs. 4) at encoding. (A) Index values (described Materials and methods

section: Induced power frequency analysis) plotted on topographic maps. Green corresponds to set size 4 > set size 2, purple corresponds to set size 2 > set

size 4. (B) t-stats plotted on topographic maps. Plotted values correspond t-stats at or below a p value of 0.05. Red corresponds to set size 4 > set size 2, blue

corresponds to set size 2 > set size 4. (C) t-stats at each electrode arranged by p values. Green dotted line represents a threshold of α = 0.05. Channels

significant at or above the FDR threshold are represented by a thicker border. Each row depicts data from a single frequency band: delta (top), theta, alpha,

beta, gamma (bottom).

doi:10.1371/journal.pone.0167022.g004
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set size because we report greater activity for the smaller set size condition. There is a key dif-

ference in viewing and interpreting these data comprehensively. Previous work examined the

aggregate neural resources afforded all stimulus items. Here, the frequency-tagging approach

permits measurement of individual stimuli. Thus, the aggregate response increases with set

size, whereas the individual response data shows that the amount of neural resources allocated

to any single stimulus item actually decreases. In other words, when more stimuli are pre-

sented, more resources are needed to represent them effectively in VWM, yet each item gets a

smaller portion of these resources.

There is an essential role of attention as a selection process for further processing and entry

into VWM. Indeed, attentional cueing reveals the large storage of iconic memory [6], and the

decay in resolution between iconic and the proposed fragile and robust stages of VWM [57].

Attention facilitates performance on change detection tasks [58] and in VWM more generally

[59,60]. Research on object tracking also shows important parallels between the deployment of

attention in visual tasks and VWM capacity limitations. Pylyshyn and Storm [61] showed that

participants track no more than 5 independently moving objects and that there exists an

inverse relationship between accuracy and number of targets being tracked. Furthermore,

there is evidence that working memory capacity is predictive of an individual’s tracking capac-

ity [62]. A study by Drew & Vogel [63] showed that the capacity limitations associated with

object tracking tasks appear to arise during the initial selection process when subjects are allo-

cating their attentional resources towards the to-be-tracked items.

Additional analogs between object tracking and VWM have come from fMRI studies exam-

ining BOLD activation and the effects of attentional load. Specifically, as the number of items

being tracked increases there is a corresponding linear increase in PPC activity [64,65] much

like the effects observed during the maintenance phase of VWM tasks [17,19]. We note though

that attention alone is insufficient to ensure successful VWM encoding. It is likely the case that

encoding-specific processes are required, perhaps enabled by attention [66].

Although the effects observed in the evoked analysis were prominent for the set size 2 > set

size 4 condition, it is worth mentioning that some electrodes showed the opposite effect, set

size 4 > set size 2. Specifically, this was observed on 4 posterior-central electrodes at the funda-

mental frequency. Interestingly, these results seem to coincide with the CDA and fMRI VWM

data that show increasing neural activity with increased set size [10,21]. Furthermore,

enhanced connectivity has been observed between extrastriate regions and frontal and parietal

sites [38–40]. Thus, one interpretation of these results can be seen as the shifting of neural

resources to posterior regions given increased task demands. However, we reiterate that the

majority of electrodes showed the opposite effect and advise caution in making inferences

from topography to neural sources given the many known challenges associated with EEG

source estimation [67].

One aspect of our results deserves further comment. The pattern of results is most evident

at the 2nd harmonic compared to the fundamental frequency. One possible explanation is that

the first and second harmonic underlie differing cognitive processes. One suggestion is that

the fundamental frequency and the second harmonic originate from different neural popula-

tions with differing topographical distributions [46]. Furthermore, the fundamental frequency

is thought to be associated with low-level visual responses whereas the second harmonic is

thought to reflect higher-level visual processes [44]. Subsequently, the second harmonics show

greater attentional modulation compared to the fundamental frequency [46]. One assumption

of the present study is that successful retrieval is contingent upon the distribution of sufficient

attentional resources during encoding, thus greater signal would be expected in the second

harmonic. Thus, we hypothesize that the observed differences between the fundamental fre-

quency and the 2nd harmonic are consistent with the underlying generators of the frequency-
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tag signal. Next, we will briefly summarize the advantages of using the frequency-tagging

method for further investigating encoding related processes.

One of the major advantages of the frequency-tagging technique is that it allows for the

examination of neural responses associated with specific stimuli by extracting the amplitude

associated with each “frequency-tag”. However, studying VWM encoding presents a challenge

in the form of disambiguating encoding from maintenance phases. This is especially a concern

for fMRI research given fMRI’s poor temporal resolution and infrequent use of partial trials

[16]. However, even traditional ERPs can present similar challenges because evoked EEG com-

ponents evolve over tens to hundreds of milliseconds. Thus, frequency-tagging provides an

ideal technique to isolate encoding related processes and to characterize the neurophysiologi-

cal signal associated with individual items.

The induced frequency analysis also showed greater activity in the set size 2 condition in

the delta band at frontal and posterior electrode cites as well as some theta activity in frontal

electrodes. No significant differences were observed in alpha, beta or gamma bands. The theta

band oscillations are consistent with previous observations that they may be driven by cortico-

hippocampal interactions [68]. Theta band oscillations are associated with various cognitive

domains, including working memory [69], episodic memory encoding and retrieval [47], cog-

nitive control [70], selective attention [71], and attentional allocation to target stimuli [72].

However, we remind the reader that although some electrodes in the theta band were signifi-

cant at an alpha of 0.05, none of the electrodes survived FDR correction. Thus, the evidence

for the involvement of theta activity in the current task is minimal at best. Less is known

regarding the role of delta oscillations in human cognition [73]. Some evidence suggests there

are functional similarities between the delta and theta bands specifically as it relates to cogni-

tive control [74]. Given its slow oscillation, the delta band is well suited for long-range com-

munication and may serve as a mechanism by which frontal lobes modulate distant brain

regions [73]. Delta oscillations contribute to the P300 oddball response and are modulated by

novel distractors as well as task switching cues [75]. Delta band oscillations have also been

associated with attentional selection and stimulus expectancy [76, 77]. Finally, as it relates to

VWM, studies suggest that delta oscillations increase in regions that relate to inhibition of

interference during the task [73,78,79].

On a related note, the set size 2 condition contained two squares flickering at 12 Hz and 20

Hz in addition to the to-be-remembered stimuli. These squares were added so as to avoid any

potential artifacts stemming from more flickering stimuli in the set size 4 condition. Partici-

pants were instructed to ignore these flickering squares and, the significantly better behavioral

performance in the set size 2 condition indicates they did so successfully. Thus, solely the set

size 2 condition required the filtering of task-irrelevant distractors whose spatial location dif-

fered between trials. Thus, based on the studies reviewed in the previous sections [71–

73,78,79], a speculative interpretation of the induced delta and theta power is that these fre-

quencies may be relevant in distractor filtering and attentional selection.

In closing, by examining the neural signals generated by frequency tags for each to-be-

encoded stimulus, we build upon our previous findings [45] that highlighted the role of errors

at encoding as a contributing factor of VWM capacity. By focusing on neural set-size effects

for correct trials, the current study revealed that like VWM as a whole, encoding-related neural

resources are likely capacity-limited. These resources get distributed across to-be-encoded

items such that the amount of resources allocated to each item is inversely proportional to the

number of items being encoded. We conclude that this encoding-specific capacity limitation

can account at least in part for declines in behavioral performance on VWM tasks observed as

set sizes increase. These findings further highlight the importance of encoding-stage processes

in constraining models of VWM capacity.
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